
THE TRAVELLING SALESMAN PROBLEM
Heuristics

Author: Prof. Ana Inés Gómez de Castro
 Universidad Complutense de Madrid

Astronomy
 Workshop

Volume

2

T H E T R A V E L L I N G S A L E S M A N

Astronomy Workshop

© Ana Inés Gómez de Castro
Facultad de Ciencias Matemáticas

Universidad Complutense de Madrid
email:aig@mat.ucm.es

i

Table of contents

C H A P T E R I

Combinatory and heuristics 1

The Travelling Salesman problem 1

Heuristic Algorithms 2

Iterative Improvement 3

Chapter

1

Combinatory and
Heuristics
The T lesman Problem ravelling Sa

he star traveller” is an application designed to introduce
Secondary/High School students in a basic problem of Artificial
Intelligence (AI) most commonly known as “the travelling salesman
problem”. This problem is introduced through visits to other

Planetary Systems.

“T
In a first step, “Learn to plan a trip” , only 4 systems can be visited, thus it is quite
easy to enumerate all the possible paths and evaluate the total distance covered in
each of them :

P4 = 4! = 4*3*2*1 =48

Then the problem becomes more complicated as the students are allowed to travel
among 10 of the 155 known systems in “Design a smart trip”. In this case, the simple
enumeration of all the possible paths:

P10 = 10! = 10*9*8*7*6*5*4*3*2*1 =3.628.800

e.g. more than three million possible combinations!, would take a huge amount of
time. Suppose that it takes just few seconds (let’s say 3) to your “video-games
trained students” to set a full path with our graphic interface, they would either
need 12.6 days to test them all or be VERY lucky!!.

This problem is an astronomic version of the “Problem of the Travelling Salesman”, a
classic in Operations Research (OR). The problem of the travelling salesman, in
itself, presents a “certain” degree of computational complication as the number of
possible solutions increases exponentially with the number of “planets to visit” and
no algorithm has yet been found to solve it without enumerating, explicitly or
implicitly, all of the feasible solutions.1 “The smart space traveller” is thought as an

1These kinds of problems are called “NP-hard” (or problems of NP difficulty). Computational
complexity is a rigorous mathematical discipline which shows how most optimisation problems can be
grouped into classes in such a way that all problems of the same class have a similar complexity. The
“NP-hard” problems represent the most important class.

1

introductory exercise to the concept of “heuristic algorithms” or algorithms
capable of offering a sufficiently good solution to the problem without having to
go into all of the possible solutions.

 A large number of heuristics has been developed to solve this kind of
problems, from very simple algorithms involving re-organisation of the sequence
or path, to much more complicated algorithms, such as neuronal networks or
genetic algorithms. The exercise set within this educative application includes an
interface to graphically codify a simple algorithm (a greedy algorithm to set a good
first approach to the optimal path). The exercise was created so that the students
can test a very basic greedy algorithm and learn the complexity hidden behind any
apparently reasonable approach. HOU-Spain plans to insert new capabilities as the
project develops in the classrooms and feedback from teachers to let us know the
most reasonable algorithm-building graphic interfaces meaningful for
secondary/high school students. The rest of this chapter contains some simple
algorithms which can be used by teachers to initiate students in the use of this tool
and some basic artificial intelligence projects.

Heuristic to solve the travelling salesman
problem.
There are different types of heuristics, depending on how they look for and build
solutions. A possible classification divides them into constructive heuristics and
iterative improvement

a) Constructive or pure methods: These methods generate the
travelling salesman path by adding vertices according to some specific
criterion. Once a reasonable path has been identified, these algorithms do
not attempt to improve it. The most popular among these methods are the
“greedy” algorithms, which generate the solution step by step, seeking the
maximum benefit at each step.

b)Methods of iterative or local improvement: These methods do not
try to reach a feasible solution, rather they start from one of them
(obtained perhaps through a constructive method) and then improve it
through an iterative process that ends when a given condition is fulfilled.

Simple algorithms tend to have well-defined rules of termination and they stop at a
local optimal. More complex algorithms may not have standard rules of
termination and typically search for better solutions until they reach an arbitrary
stopping point.

 2

Constructive or pure algorithms

The nearest neighbour algorithm uses a very basic idea to construct a
feasible route. It generates a route iteratively by selecting, at each step, the city
closest to the one you are in (this is the algorithm implemented in the graphical
interface). At each step, the method needs a vertex , the departure point, and
another, t , that is sought among all the possible vertices (included in W) which
have not yet been visited. Initially

0n

0t n= and { }0\W N n= .

ALGORITHM – THE NEAREST NEIGHBOUR

Step 0: Select an arbitrary vertex . Make 0n 0t n= and { }0\W N n=

Step 1: As W ≠∅ , do the following:

choose j W∈ so that { }mintj tic c i= ∈W

 connect t to j and write { }\W W j= and t j= .

 Step 2: Connect t to the initial vertex to form a Hamiltonian cycle. 0n

A slight variation of this algorithm consists of permitting the extension of
the route in either directions, this is called the nearest bilateral neighbour algorithm.

 Heuristics of iterative improvement

To improve on a suitable solution chosen at random (for example, by means of the
nearest neighbour method), these heuristics change the order of the cities/stars to
be visited in an iterative manner. They all fit within these simple steps:

1. Generate a feasible initial S solution. Let T(S) be its target function, for
instance, the total amount of fuel spent in the path.

2. Try to find an improved possible S’ solution, by means of some
transformation of S.

3. If a better solution is found (e.g., if T(S’) < T(S) assuming that you wish to
minimize the fuel used) , replace T with T’ and repeat from step 2.

4. If a better solution cannot be found, S is the local optimal solution.

 3

What differentiates and characterises each iterative procedure is step 2. Basically,
these methods find the first local optimum of the target function T(S) and stop the
iteration there, preventing the global optimum from being reached unless this is the
first found.. Therefore, the existence of local optima is one of the greatest
inconveniences of this type of heuristics.

A related problem is the dependence of the goodness of the final solution
(S’) on a cleaver selection of the initial solution (S). Obviously, the initial solution
(S) has a great influence on the possibility of falling or not falling into a local
optimum that is not the global one.

 Some simple iterative improvement heuristics
We propose three simple exchange transformations to try with the students: Simple
Improvement, 2-Opt exchange, and Lin-Kernighan Algorithms. The simplest algorithm is
the 2-Opt exchange: in this algorithm, the route of the trip is reorganised,
interchanging the order in which two stars are visited. The first star is selected and
the voyage is reorganised, interchanging it with all the possible stars. The distance
in all of these permutations is evaluated and the best one is chosen. Later, another
star is chosen and the procedure is repeated. In this way, instead of calculating N!
permutations, we calculate

∑
−=

=

1

1

Ni

i
iN

possible paths. For example, in the case of visiting 10 stars, it would not be
necessary to calculate the 10! possible permutations, rather than only
10(9+8+7+6+5+4+3+2+1) =450, as indicated in the figure.

1
2

3

10

9

8

7 5

4

6

 4

Other algorithms are based on making more complex changes, as indicated in the
figure below.

 5

	Volume
	Astronomy Workshop
	Chapter
	Combinatory and Heuristics

