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Combinatory and 
Heuristics 
The T lesman Problem ravelling Sa

he star traveller” is an application designed to introduce 
Secondary/High School students in a basic problem of Artificial 
Intelligence (AI) most commonly known as “the travelling salesman 
problem”. This problem is introduced through visits to other 

Planetary Systems.  

“T 
In a first step, “Learn to plan a trip” , only 4 systems can be visited, thus it is quite 
easy to enumerate all the possible paths and evaluate the total distance covered in 
each of them : 

P4 = 4! = 4*3*2*1 =48 

Then the problem becomes more complicated as the  students are allowed to travel 
among 10 of the 155 known systems in “Design a smart trip”. In this case, the simple 
enumeration of all the possible paths: 

P10 = 10! = 10*9*8*7*6*5*4*3*2*1 =3.628.800 

e.g. more than three million possible combinations!, would take a huge amount of 
time.  Suppose that it takes just few seconds (let’s say 3) to your “video-games 
trained students” to set a full path with our graphic interface,  they would either 
need 12.6 days to test them all or be VERY lucky!!.  

This problem is an astronomic version of the “Problem of the Travelling Salesman”, a 
classic in Operations Research (OR). The problem of the travelling salesman, in 
itself, presents a “certain” degree of computational complication as the number of 
possible solutions increases exponentially with the number of “planets to visit” and 
no algorithm has yet been found to solve it without enumerating, explicitly or 
implicitly, all of the feasible solutions.1 “The smart space traveller” is thought as an 
                                                                          

1These kinds of problems are called “NP-hard” (or problems of NP difficulty). Computational 
complexity is a rigorous mathematical discipline which shows how most optimisation problems can be 
grouped into classes in such a way that all problems of the same class have a similar complexity.  The 
“NP-hard” problems represent the most important class. 
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introductory exercise to the concept of “heuristic algorithms” or algorithms 
capable of offering a sufficiently good solution to the problem without having to 
go into all of the possible solutions.   

 A large number of heuristics has been developed to solve this kind of 
problems, from very simple algorithms involving re-organisation of the sequence 
or path, to much more complicated algorithms, such as neuronal networks or 
genetic algorithms. The exercise set within this educative application includes an 
interface to graphically codify a simple algorithm (a greedy algorithm to set a good 
first approach to the optimal path). The exercise was created so that the students 
can test a very basic greedy algorithm and learn the complexity hidden behind any 
apparently reasonable approach. HOU-Spain plans to insert new capabilities as the 
project develops in the classrooms and feedback from teachers to let us know the 
most reasonable algorithm-building graphic interfaces meaningful for 
secondary/high school students. The rest of this chapter contains some simple 
algorithms which can be used by teachers to initiate students in the use of this tool 
and some basic artificial intelligence projects.   

 

Heuristic to solve the travelling salesman 
problem.  
There are different types of heuristics, depending on how they look for and build 
solutions. A possible classification divides them into constructive heuristics and 
iterative improvement 

a) Constructive or pure methods:  These methods generate the 
travelling salesman path by adding vertices according to some specific 
criterion. Once a reasonable path has been identified, these algorithms do 
not attempt to improve it. The most popular among these methods are the 
“greedy” algorithms, which generate the solution step by step, seeking the 
maximum benefit at each step. 

b)Methods of iterative or local improvement: These methods do not 
try to reach a feasible solution, rather they start from one of them 
(obtained perhaps through a constructive method) and then improve it 
through an iterative process that ends when a given condition is fulfilled. 

 

Simple algorithms tend to have well-defined rules of termination and they stop at a 
local optimal. More complex algorithms may not have standard rules of 
termination and typically search for better solutions until they reach an arbitrary 
stopping point.  
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Constructive or pure algorithms  

The nearest neighbour algorithm uses a very basic idea to construct a 
feasible route. It generates a route iteratively by selecting, at each step, the city 
closest to the one you are in (this is the algorithm implemented in the graphical 
interface). At each step, the method needs a vertex , the departure point, and 
another, t , that is sought among all the possible vertices (included in W ) which 
have not yet been visited. Initially 

0n

0t n=  and { }0\W N n= . 

 

ALGORITHM – THE NEAREST NEIGHBOUR 

Step 0: Select  an arbitrary vertex . Make 0n 0t n=  and { }0\W N n=  

Step 1:  As W ≠∅ , do the following: 

choose j W∈ so that { }mintj tic c i= ∈W  

              connect t to j and write  { }\W W j=  and t j= . 

            Step 2: Connect t to the initial vertex to form a Hamiltonian cycle. 0n

  

A slight variation of this algorithm consists of permitting the extension of 
the route in either directions, this is called the nearest bilateral neighbour algorithm.  

 

 Heuristics of iterative improvement 

To improve on a suitable solution chosen at random (for example, by means of the 
nearest neighbour method), these heuristics change the order of the cities/stars to 
be visited in an iterative manner. They all fit within these simple steps: 

1. Generate a feasible initial S solution. Let T(S) be its target function, for 
instance, the total amount of fuel spent in the path. 

2. Try to find an improved possible S’ solution, by means of some  
transformation of  S. 

3. If a better solution is found (e.g., if T(S’) < T(S) assuming that you wish to 
minimize the fuel used) , replace T with T’ and repeat from step 2. 

4. If a better solution cannot be found, S is the local optimal solution.  
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What differentiates and characterises each iterative procedure is step 2. Basically, 
these methods find  the first local optimum of the target function T(S) and stop the 
iteration there, preventing the global optimum from being reached unless this is the 
first found.. Therefore, the existence of local optima is one of the greatest 
inconveniences of this type of heuristics. 

A related problem is the dependence of the goodness of the final solution 
(S’) on a cleaver selection of the  initial solution (S). Obviously, the initial solution 
(S) has a great influence on the possibility of falling or not falling into a local 
optimum that is not the global one. 

 

 Some simple iterative improvement heuristics 
We propose three simple exchange transformations to try with the students: Simple 
Improvement, 2-Opt exchange, and Lin-Kernighan Algorithms. The simplest algorithm is 
the 2-Opt exchange: in this algorithm, the route of the trip is reorganised, 
interchanging the order in which two stars are visited. The first star is selected and 
the voyage is reorganised, interchanging it with all the possible stars. The distance 
in all of these permutations is evaluated and the best one is chosen. Later, another 
star is chosen and the procedure is repeated. In this way, instead of calculating N! 
permutations, we calculate 

∑
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possible paths. For example, in the case of visiting 10 stars, it would not be 
necessary to calculate the 10! possible permutations, rather than only 
10(9+8+7+6+5+4+3+2+1) =450, as indicated in the figure. 
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Other algorithms are based on making more complex changes, as indicated in the 
figure below. 
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