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Kepler's Laws

Johannes Kepler (1571-1630) was a contemporary of Galileo and had
accepted the Copernican Doctrine from youth. He was totally convinced that there
was a clean mathematical formulation behind the planetary motion. Kepler noticed
that the farther from the Sun the slower the planets move. This led him to suggest
that planets were kept in motion by the action of a force exerted from the Sun;
such a force should decrease with the distance from the Sun.

Kepler contacted Tycho Brahe and worked as his assistant investigator.
Tycho assigned the study of the orbit of Mars to Kepler. This was the most
difficult to adjust with the models available at that time. Kepler’s originality lay in
trying to solve the problem not by adding more eccentric but by adjusting it to a
simple geometric figure. After various unsuccessful attempts, he realised that the
orbit seemed to be compressed in one direction until he finally found that it fitted
to an ellipse with the Sun at one of its foci (Kepler’s First Law). Kepler also studied
the variation of the velocity of the planet, following Aristoteles dynamical theory,
he hypothesized that variations in the velocity of the planets are caused by a change
in the force acting on them. Therefore, it was plausible that the force that came
from the Sun would vary inversely with the distance so that the planet would sweep
over equal areas in equal intervals of time (Kepler’s Second Law).

In 1609, after 8 years of work, Kepler published his First and Second Laws
in the book entitled: “New Astronomy”. Kepler’s Laws sum up the basis of the
kinematics of planetary motion and as such, can be ( and are) used to derive the
positions of the planets. They also correspond to the exact solution of the #wo-body
problem.

The two-body problem

The two-body problem is the mathematical study/formulation of the
gravitational interaction between two masses. The modern formulation of the
problem is very simple; Newton’s third law is written at the baricenter (or
centre of mass) of the system and trajectories are determined by the solution
of a very simple differential equation:
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dt’ J re 2




where “7’ represents the distance between two interacting bodies

(F =1, —T,) with masses “#/” and “M”, and “G”is the gravitational
constant.. The trajectories of each mass with respect to the instantaneous
centre of mass are given by
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The equation is solved by writing the vector ' and its detivates in a co-
moving reference frame (ug, u,) instead of the standard (X,Y) system. The
relation between both of them is shown in the figure!

In this system, equation [1]
becomes:
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The second equation is the mathematical formulation of the angular
momentum conservation (or Kepler’s Second Law). Integration requires the
introduction of a conserved constant, A, the angular momentum per unit of

mass, so, F°0 =h. The solution to the first equation is a conic:
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where A and 0, are integration constants. Equation [2] cotresponds to a conic
with eccentricity (e) and semi-major axis (a) :
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1 ' marks the instantaneous modulus and orientation with respect to the X

axisof ([ —T,).




where € represents the conserved energy (per unit mass):

g:r__GMer
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Thus, the two integration constants (h,g) are related to the two conserved
physical magnitudes (angular momentum and energy). Energy controls the size
of the orbit, while the eccentricity is controlled by a combination of the two.

Conics and Orbits:

The relationship between the geometry of the orbit and the fundamental
physical parameters of the problem can be summed up in the following table.

e=0 Circular orbit [G(M n m)]Z

0<e<1 | Elliptic orbit Enin <&<0

e=1 Parabolic orbit =0
e>1 Hyperbolic orbit | £ >0

If €<0, orbits are bound and both objects are tight together unless one of
them is given some extra energy by another mechanism. If €>0, orbits are
unbound and the interacting bodies can escape from their mutual gravitational
attraction. Parabolic and circular orbits are limiting cases that cannot be
measured in Nature, as this would imply an infinite precision, which does not
exist. The orbits of Solar System bodies (i.e., bodies trapped by the gravity of
the Sun) are elliptic. The orbits of bodies that escape from the Solar System are
hyperbolic. Space probes can use hyperbolic orbits (using the gravity of nearby
massive planets, for example, Jupiter) to minimize the fuel spent in trajectories
which must reach objects that are further away.







Kinematics of planetary
motion:

To determine the position of a planet in its orbit, it is necessary to know the
orbit, that is, the major semi-axis of the orbit, (a) and the eccentricity (e). If we

also wish to know where the planet is on a given date, T, we will need an initial
condition: normally we take the date on which it passed through the perihelion

(or position closest to the Sun), as the date of reference T, and the position of
the perihelion as the origin of angles.

Aphelion _ Perihelion

Once the geometry is defined, the kinematics of planetary movement are given
in Kepler’s Second Law: “the planets sweep out the same area in the same

time no matter where in the orbit”.

As a first approach, planets could be considered to move in circular
orbits at constant velocity. The position of the planet is then defined by an
angle, the mean anomaly, such that:

M(r)=2T—”(r—ro>

where T represents the orbital period.




This “average” angle can be related to the Ecentric Anomaly, E, using
Keppler’s 2™ Law and some simple geometric relations between ellipse and
circle, as indicated in the figure,

P
,/
/’ |
’ 1
e T |
Vi
\E -
(|
O AT
ac
al L
» a »
al Lt

Kepler’s Second Law states that:
mab  SurfaceOHP

T T—1,

or

M = 2—”(r —7,) = (ijSurfaceOHP
T ab

It can be shown from the figure that,
SurfaceOHP = (a?b](E —esinE)

S0, , is obtained:

M (7) = E(r) — esenE(r)

This equation is known as Kepler’s Equation and needs to be solved by
numerical methods such as Newton’s method (see Appendix).

Once E is obtained, the calculation of the #ue anomaly, v, and the
distance Sun-Planet at this instant, r, is obtained in a direct manner, using the
relationship between E, r and v, derived from the figure:




r(r) = afl—e-cos E(r)]




Orbital elements:

The orbits of the planets are not situated in the same plane, nor do they have
the same orientation. It is necessary to introduce three geometric elements that
define an orbital plane and the orientation of the orbit in the plane.

Plutdn
Sol

Halley

The orientation refers to a Heliocentric Ecliptic System of Reference, as seen in the figure:

Ecliptic




and the new elements ate:
- indination of the orbital plane with respect to the ecliptic, i
- ecliptic longitude of the ascending node, €

- angument of peribelion or angle between the ascending node (N) and the
direction of the perihelion, ®

Instead of the parameter ®, a new parameter is commonly used:
o=w0+Q

called longitude of peribelion.

In summary, the parameters, i, @, L, a, e, 7, define a unique orbit. These

parameters are called orbital elements.

Orbital elements for all of the bodies in the Solar System (and also for satellites in
orbit around the Earth) vary over time. The gravitational action of other bodies
converts the two-body problem into a problem of N-bodies, which is not
integrable, and needs to be solved numerically.







Effect of Radiation
Pressure

A s shown in Manual 1 of this series, radiation pressure exerts a force that is

inversely proportional to the square of distance, as gravity. This driving
force is needed to sail the Solar System with solar sails, as those used in the
application “Sailing the Solar System:”. The two body problem is revisited in this
Chapter but taking into account radiation pressure. As shown in Manual 1, solar
radiation exerts a pressure given by?2:

= 1.12-10" -S
P —

This thrust is braked by the gravitational force exerted by the Sun. As long as the
sails maintain the same orientation with respect to the Sun, the problem is very easy
to solve and can be integrated directly, as we shall see.

To begin with, notice that the dynamical equation [1| is modified to
introduce the radiation force so,

d’F - —
dtz Zg_Frad

then, following the same procedure as in Chapter 2 (change to a mobile base and
generation of two scalar equations from the vectorial equation) and substituting:
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with, p=G(M+m) and {=Scos@, we obtain:
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To bring in numbers, it is necessary to

substitute the constants in the problem for

realistic values. In the application “Sazling the Solar System:”, we have considered that
the spacecraft leaves a space station at L1- i.e. co-orbiting with the Earth around
the Sun. Therefore, the angular momentum per unit of mass of the spacecraft will

be very similar to that of the Earth:

h=45-10"cm?s™
If the mass of the spacecraft is similar to that of the prototype COSMOS-I (100
kg), then:

x=1.12.107 9In2S

and pu=1.33-10* g-cm’s”. So,

g

2
0, —657.10
0

~553.102¢(cm?) =




where  is a constant for the fixed orientation of the Solar Sails.

Therefore, the radiation pressure will only have a significant effect on the
trajectory if the surface of the ship is around 10°cm® or 10’m®. ‘The size proposed
for the sail in the application (100,000m” is the surface of a circle of a radius of
178m), is derived from this estimate. The solution to the equation is:

%: Acos(@—-6,)+ ¢

with 0, and A constants of integration.

If we set the origin of the angles at the point of greatest proximity of the spacecraft
to the Sun, then 0,=0 and, in addition,

=A+p
r

perihelio

Let us suppose that the distance from the spacecraft to the Sun in the perihelion is
approximately equal to the average distance Sun-Farth(1.49-10"cm). In this case,
the value of the constant A will depend on the projected surface of the sails, C, as,

A=8.33-10" -5.53-10 " ¢(m?)
where A is given in cm™,

. 1/ p
1+ (A/p)-cosd

Thus orbit of a solar sail ship (that keeps the sails always oriented in the same

direction in relation to the Sun) is an ellipse, although, for the same value of &, the
eccentricity of the orbit would be much larger than the purely gravitational orbital
motion.

Finally, observe that vector I points to the Sun as, on defining our mobile base of

vectors, we chose =1, — T .
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Components of the velocity vector:

At any moment, the components of velocity of the spacecraft (assuming C as a
constant) will be:
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Azimutal Velocity: Ve

For a ship leaving the orbit of the Farth, 17 is given in a direct way by the
constant, /4, the constant angular momentum

19
Vlg:ré:rlzzhzﬁ
r r r

if we wish to give 7 in astronomic units (see Manual I) and obtain g in km/s,

V - 30.20km/s
¢ r(u.a.)




Radial velocity: V,
Radial velocity must be calculated from this equation [3],
V, =f=h-A-send [4]
substituting the constants h and A, we obtain:
V, =[37.49km /s —2.48-10*km/s-S(m?)-cos p|- send

Notice that, depending on the effective surface of the sail, the radial velocity will
fluctuate between very small or very large values. Another way of visualising this

effect is by substituting sin@ for its value depending on 1, in equation [4],

2 2
sen0=V1—c0529:\/1— 12 (l—p) =£\/A2_(1_(§0)
r

A A r

so that,

General considerations on the trajectory and value
of the energy constant:

The integration constant, A, is fixed by the energy per unit of mass in the orbit, as
we have seen in Chapter 1. Therefore, it is usual to give V, directly as a function of
the energy per unit of mass, €. This energy is the sum of the kinetic and potential
energy:

2 2
vV, =\/2~|:g—vi+£h2} =\/2{8—(h—2—£h2ﬂ
2 r 2r r

Notice that V, represents the modulus of the radial velocity, i.e., V.2 0; this sets

important constraints on the radical once € is fixed. It is usual to define a function
D(r) or Eftective Potential, such that,




(1 e
q)(r)_h(Zrz rj

and substituting the constants,

-4 _ 10-14
(1) = (2.02-10%erg /9(212 (65710 -5.02.10 5))
r r

where, for convenience , we have introduced a new constant, €, to give us the

fraction of the maximum possible surface total surface £,=9.0792:10'm’ (equivalent
to the surface of a circle with a radius of 170 m), covered by the sail,

~ S(m?)cosg

c= 9.0792-10*

The shape of the effective potential depends on the value of £, i.e., on the
efficiency of the radiation pressure collector. If the radiation collector is very big,
the spacecraft could escape the gravity of the Sun and leave the Solar System. To
the contrary, if the collector is small, the spacecraft would be trapped in an orbit
similar to that of the Space Port (and of the Earth). This can be seen in the figure:

Potencial Efectivo

5x 10"

—5x1g"

—1x10%

The vertical axis of this figure indicates the value that should be adopted by the
constant of energy &, so that (e-P) >0 and, therefore, we can keep the spacecraft in




this position. The most negative curve corresponds to £=0.1 and the most positive
to £=10. In the first case, the solar sail ship does not get enough thrust from solar
radiation to escape the Space Port and will remain trapped in a nearby orbit. In
contrast, if =10, the spacecraft gets an enormous push from radiation and easily
leaves the Port and the Solar System.

In practice, the value of € is very small, —4.48 - 10"erg/ g, at the Earth otbit and

any reasonably sized sail (like the one proposed for the prototype Cosmos I) could
not make it. In the application, we have used unrealistically high values for the
surface to allow the students to play with the thrust of Solar Radiation. If they fill
up a significant fraction of the total available surface (the circle at the begining of
the application) they should be able to significantly modify V, and thus the
direction of the total velocity vector. This opens up the “launching windows” for
solar sail ships. The objective of the application is to strengthen some basic
concepts in Physics.

Notice that the “launching angle” or angle that the ship velocity makes with the
vector Sun-Spacecraft is:
\Y
tang = —
Vy
Thus ¢ can be varied by modifying V, that, in turn, can be modified by turning the
sails (i.e. changing @) since:
V_(km/s)=37.49-2.48-107*S(m?)cos ¢
The students are to go through this set of operations:

1. adjusting V, with the graphic interface to launch the ship in the desired
direction (get the resultant vector V aligned with the Space Port-Saturn
direction)

2. the projected surface needed to get this resultant is calculated internally
from:

37.49-V,

S(m?)cosp =
(M)eose = e 10+

and given to the student by the application.
3. Later, students determine the projection angle ¢ using the surface of the

sail as designed by them and the projected surface provided by the
application.




Newton’s Method

Newton’s Method is an iterative procedure to determine the zero’s or
roots, “t”, of any equation f'(x) = 0, providing that the function is “well-behaved”.
An initial guess value, “x,”, is required and the first derivative of f(x), £(x), should

not change sign within the interval (X, ) to guarantee convergence.

f(x)

(=0, fl=0])

The straight line tangent to the curve at (x,, f{x,)) intersect the X-axis at “x,”, which
is closer to the root “t” than “x;”. Thus,

0—f(x)=f (%)X —%) SRR
and, X; = X, — f,(XO)
f (XO) L 1 %0

This procedure can be repeated as many
(13 2

times as needed so a new “x,” may be
defined, as in the figure, such that,

_ fx)
f(x)

X, =X




and, in general, the recurrence formula: | X,; = X,

_ f(%)
f(x,)

)

Application to the resolution of Kepler's equation:

To find the solution to Keplet’s equation is equivalent to find the zeros of

the function f(E) such that:

f(E)=M —E +e-senE

and making use of the Newton’s method(*):

X, =E,
f(E,)=M —-E, +e-sen(E,)
f'(E,)=-1+cos(E,)
then,
N+l En - f(En) ;
f(E,)
E . -E - M -E, +e-senE,
—1+cosE,
and,
M —-E, +e-senE
En+1 = En + : :
1-cosE,

taking in the first iteration E, = M’

3 Note: Angular values must be expressed in

radians.
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