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Chapter 

1 
 

Kepler’s Laws 
Johannes Kepler (1571-1630) was a contemporary of Galileo and had 

accepted the Copernican Doctrine from youth. He was totally convinced that there 
was a clean mathematical formulation behind the planetary motion. Kepler noticed 
that the farther from the Sun the slower the planets move. This led him to suggest 
that planets were kept in motion by the action of a force exerted from the Sun; 
such a force should decrease with the distance from the Sun. 

 Kepler contacted Tycho Brahe and worked as his assistant investigator. 
Tycho assigned the study of the orbit of Mars to Kepler. This was the most 
difficult to adjust with the models available at that time. Kepler’s originality lay in 
trying to solve the problem not by adding more eccentric but by adjusting it to a 
simple geometric figure.  After various unsuccessful attempts, he realised that the 
orbit seemed to be compressed in one direction until he finally found that it fitted 
to an ellipse with the Sun at one of its foci (Kepler’s First Law). Kepler also studied 
the variation of the velocity of the planet, following Aristoteles dynamical theory, 
he hypothesized that variations in the velocity of the planets are caused by a change 
in the force acting on them. Therefore, it was plausible that the force that came 
from the Sun would vary inversely with the distance so that the planet would sweep 
over equal areas in equal intervals of time (Kepler’s Second Law). 

In 1609, after 8 years of work, Kepler published his First and Second Laws 
in the book entitled: “New Astronomy”. Kepler’s Laws sum up the basis of the 
kinematics of planetary motion and as such, can be ( and are) used to derive the 
positions of the planets. They also correspond to the exact solution of the two-body 
problem. 

The two-body problem 
The two-body problem is the mathematical study/formulation of the 

gravitational interaction between two masses. The modern formulation of the 
problem is very simple; Newton’s third law is written at the baricenter (or 
centre of mass) of the system and trajectories are determined by the solution 
of a very simple differential equation: 
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r

mMGg
dt

rd r
r

32

2 )( +
−==         [1] 

1 



 

where “r” represents the distance between two interacting bodies 
( mM rrr rrr

−= ) with masses “m” and  “M”, and “G” is the gravitational 
constant.. The trajectories of each mass with respect to the instantaneous 
centre of mass are given by 
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The equation is solved by writing the vector rr   and its derivates in a co-
moving reference frame (uθ, ur) instead of the standard (X,Y) system. The 
relation between both of them is shown in the figure1  
 In this system, equation  [1] 

becomes: 
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The second equation is the mathematical formulation of the angular 

momentum conservation (or Kepler’s Second Law). Integration requires the 
introduction of  a conserved constant, h , the angular momentum per unit of 
mass, so, .  The solution to the first equation is a conic: hr =θ&2
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where A and θ0 are integration constants.  Equation [2] corresponds to a conic  
with eccentricity (e) and semi-major axis (a) : 
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1 rr  marks the instantaneous modulus and orientation with respect to the X 
axis of   )( rr mM

r r
− . 
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where ε represents the conserved energy (per unit mass): 
 

r
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Thus, the two integration constants (h,ε) are related to the two conserved 
physical magnitudes (angular momentum and energy). Energy controls the size 
of the orbit, while the eccentricity is controlled by a combination of the two. 

Conics and Orbits: 
The relationship between the geometry of the orbit and the fundamental 
physical parameters of the problem can be summed up in the following table. 
 
 

e=0  Circular orbit [ ]
2

2

min 2
)(

h
mMG +

−== εε  

0<e<1 Elliptic orbit 0min << εε  
e=1 Parabolic orbit 0=ε  
e>1 Hyperbolic orbit 0>ε  

 
If ε<0, orbits are bound and both objects are tight together unless one of 
them is given some extra energy by another mechanism. If ε>0, orbits are 
unbound and the interacting bodies can escape from their mutual gravitational 
attraction. Parabolic and circular orbits are limiting cases that cannot be 
measured in Nature, as this would imply an infinite precision, which does not 
exist. The orbits of  Solar System bodies (i.e., bodies trapped by the gravity of 
the Sun) are elliptic. The orbits of bodies that escape from the Solar System are 
hyperbolic. Space probes can use hyperbolic orbits (using the gravity of nearby 
massive planets, for example, Jupiter) to minimize the fuel spent in trajectories 
which must reach objects that are further away.  

 3 



 

Circle: 
 
Locus of the points  in a  plane whose distance from a  
fixed  point is constant. 
 
Equation and parameters: 
 

222 ryx =+  
 
r = the radius of the circle 
 
Eccentricity: 0 
 
 

Parabola: 
 
Set of  all points in a plane  such that each point in the set  
is equidistant from a line called the directrix  and a fixed point 
called the focus. Equation and parameters:: 
 

pxy 42 =  
 
p = the distance from the vertex to the focus (or the directrix) 
 
Eccentricity:: 1 
 
 

Ellipse: 
Locus of the points the sum of whose distance from two 
fixed points is constant. 
 
Equation and parameters:: 
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a = major radius (= 1/2 the longitude of the major axis) 
b = minor radius (= 1/2 the longitude of the minor axis) 
c = the distance from the centre to the focus. 
a2 - b2 = c2

 
Eccentricity: between 0 and 1 
 

Hyperbola: 
 
Locus of the points the difference  of whose distance from two 
fixed points is constant. 
 
Equation and parameters: 
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a = 1/2 the longitude of the major axis 
b = 1/2 the longitude of the minor axis 
c = the distance from the centre to the focus 
a2 + b2 = c2

 
Eccentricity::  larger than 1 

 

SUMMARY OF CONICS 
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Kinematics of planetary 
motion: 
To determine the position of a planet in its orbit, it is necessary to know the 
orbit, that is, the major semi-axis of the orbit, (a) and the eccentricity (e). If we 
also wish to know where the planet is on a given date, τ, we will need an initial 
condition: normally we take the date on which it passed through the perihelion 
(or position closest to the Sun), as the date of reference τ0 and the position of 
the perihelion as the origin of angles. 
 

PerihelionAphelion

ae

a

v 
r

 
 
 
Once the geometry is defined, the kinematics of planetary movement are given 
in Kepler’s Second Law: “the planets sweep out  the same area in the same 
time no matter where in the orbit”.  
 
 As a first approach, planets could be considered to move in circular 
orbits at constant velocity. The position of the planet is then defined by an 
angle, the mean anomaly, such that: 

)(2)( 0ττπτ −=
T

M  

 
where T represents the orbital period.  
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 This “average” angle can be related to the Eccentric Anomaly, E, using 
Keppler’s 2nd Law and some simple geometric relations between ellipse  and 
circle, as indicated in the figure, 
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Kepler’s Second Law states that: 

0ττ
π

−
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T
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or, 
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It can be shown from the figure that, 

)sin(
2
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⎠
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so, , is obtained: 
 
 

)()()( τττ esenEEM −=  
 

This equation is known as Kepler’s Equation  and needs to be solved by 
numerical methods such as Newton’s method (see Appendix). 
  
 Once E is obtained, the calculation of the true anomaly, v, and the 
distance Sun-Planet at this instant, r,  is obtained in a direct manner, using the 
relationship between E, r and v, derived from the figure:  
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SUMMARY OF THE CHAPTER 

 
 

1. Kepler’s laws provide a good first order approximation to the kinematics of 
orbital motion. 

2. Three fundamental angles (or “anomalies”) are defined to describe the orbital 
motion. 

Mean Anomaly  )(2)( 0ττπτ −=
T

M  

True Anomaly: V(τ) or  angle between the planet and the perihelion. 
 
Eccentric Anomaly: E(τ) 
 

 
3. These three angles are related by equations  
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Orbital elements: 
The orbits of the planets are not situated in the same plane, nor do they have 
the same orientation. It is necessary to introduce three geometric elements that 
define an orbital plane and the orientation of the orbit in the plane. 
 

 
 
The orientation refers to a Heliocentric Ecliptic System of Reference, as seen in the figure: 
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and the new elements  are: 

- inclination of the orbital plane with respect to the ecliptic, i 

- ecliptic longitude of the ascending node, Ω 

- argument of perihelion or angle between the ascending node (N) and the 
direction of the perihelion, ω 

Instead of the parameter ω,  a new parameter is commonly used:  

Ω+= ωω~  

called longitude of perihelion. 

In summary, the parameters, i, ω , Ω, a, e, 
0τ  define a unique orbit. These 

parameters are called orbital elements.  

Orbital elements for all of the bodies in the Solar System (and also for satellites in 
orbit around the Earth) vary over time. The gravitational action of other bodies 
converts the two-body problem into a problem of N-bodies, which is not 
integrable, and needs to be solved numerically.  
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ORBITAL ELEMENTS OF THE PLANETS OF THE 
SOLAR SYSTEM 

 

 

Planet 

a 

(a.u.) 

e Ω 

(º) 

ϖ 

(º) 

i 

(º) 

L(τ) = M(τ)+ϖ 

τ=4/June/2004  TU:00 

Mercury  0.3871 0.2056 48.33 77.5 7.00 23.49 

Venus 0.7233 0.0068 76.68 131.7 3.39 250.28 

Earth 1.0000 0.0167 - 102.9 0.00 252.78 

Mars 1.5237 0.0934 49.58 336.1 1.85 122.09 

Jupiter 5.2026 0.0485 100.45 14.8 1.30 168.63 

Saturn 9.5548 0.0555 113.66 94.3 2.49 104.32 

Uranus 19.1817 0.0473 74.00 170.3 0.77 332.22 

Neptune 30.0583 0.0086 131.78 67.7 1.77 314.50 

Pluto 39.4817 0.2488 110.30 223.8 17.16 245.97 
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Effect of Radiation 
Pressure 
 

 

s shown in Manual 1 of this series, radiation pressure exerts a force that is 
inversely proportional to the square of distance, as gravity. This driving 

force is needed to sail the Solar System with solar sails, as those used in the 
application “Sailing the Solar System”. The two body problem is revisited in this 
Chapter but taking into account radiation pressure.  As shown in Manual 1, solar 
radiation exerts a pressure given by2: 

A 

  

2

171012.1
r

SF P
⋅⋅

=Θ  

 

This thrust is braked by the gravitational force exerted by the Sun. As long as the 
sails maintain the same orientation with respect to the Sun, the problem is very easy 
to solve and can be integrated directly, as we shall see.  

 To begin with, notice that the dynamical equation [1] is modified to 
introduce the radiation force so,  

radFg
dt

rd
−=2

2 r
 

then, following the same procedure as  in Chapter 2 (change to a mobile base and 
generation of two scalar equations from the vectorial equation) and substituting:   

rrad

r

u
r

F

u
r

g

⋅⋅=

−=

ζκ

μ

2

2
 

                                                                          

2 We consider the mass of the spacecraft as 100Kg (similar to that of the COSMOS-I mission) instead of 
500Kg used in Manual I. 
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with, μ=G(M+m) and ζ=Scosϕ, we obtain: 

( )

ctehrrr

rrr
rr

==⋅⇒=⋅+⋅

⋅−
−=⋅+−=⋅−

•••••

•••

θθθ

ζκμζκμθ

2

222

2

02
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we obtain: 

⎟
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h
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ud ζκμ

θ
 

 

To bring in numbers, it is necessary to substitute the constants in the problem for 
realistic values. In the application “Sailing the Solar System”, we have considered that 
the spacecraft leaves a space station at L1- i.e. co-orbiting with the Earth around 
the Sun. Therefore, the angular momentum per unit of mass of the spacecraft will 
be very similar to that of the Earth: 

1219105.4 −⋅= scmh  

If the mass of the spacecraft is similar to that of the prototype COSMOS-I (100 
kg), then: 

g
dinas171012.1 ⋅=κ  

and μ=1.33⋅1026 g⋅cm3s-2. So, 

℘=⋅−⋅=+ −− )(1053.51057.6 22314
2

2

cmu
d

ud ζ
θ
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where ℘ is a constant for the fixed orientation of the Solar Sails. 

 Therefore, the radiation pressure will only have a significant effect on the 
trajectory if the surface of the ship is around 109cm2 or 105m2. The size proposed 
for the sail in the application (100,000m2  is the surface of a circle of a radius of 
178m), is derived from this estimate. The solution to the equation is: 

℘+−= )cos(1
0θθA

r
 

with θ0 and A constants of integration.  

If we set the origin of the angles at the point of greatest proximity of the spacecraft 
to the Sun, then θ0=0 and, in addition, 

℘+= A
rperihelio

1  

Let us suppose that the distance from the spacecraft to the Sun in the perihelion is 
approximately equal to the average distance Sun-Earth(1.49⋅1013cm). In this case, 
the value of the constant A will depend on the projected surface of the sails, ζ, as,  

)(1053.51033.8 21914 mA ς−− ⋅−⋅=  

where A is given in cm-1. 

θcos)/(1
/1

⋅℘+
℘

=
A

r  

Thus orbit of a solar sail ship (that keeps the sails always oriented in the same 
direction in relation to the Sun) is an ellipse, although, for the same value of  ε, the 
eccentricity of the orbit would be much larger than the purely gravitational orbital 
motion.  

Finally, observe that vector rr points to the Sun as, on defining our mobile base of 
vectors, we chose  mM rrr rrr

−= . 
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Components of the velocity vector: 
At any moment, the components of velocity of the spacecraft (assuming ζ  as a 
constant) will be: 

θ

Vθ 

Vr 

V 
φ

 

Azimutal Velocity: Vθ 

For a ship leaving the orbit of the Earth, Vθ is given in a direct way by the 
constant, h, the constant angular momentum 

rr
h

r
hrrV
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2
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if we wish to give r  in astronomic units (see Manual I) and obtain Vθ  in km/s,  
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Radial velocity: Vr 

Radial velocity must be calculated from this equation [3],  

[4]θsenAhrVr ⋅⋅== &  

substituting the constants h and A, we obtain: 

[ ] θϕ senmSskmskmVr ⋅⋅⋅⋅−= − cos)(/1048.2/49.37 24  

Notice that, depending on the effective surface of the sail, the radial velocity will 
fluctuate between very small or very large values. Another way of visualising this 
effect is by substituting sinθ  for its value depending on r, in  equation [4],   

2
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General considerations on the trajectory and value 
of the energy constant:  
The integration constant, A, is fixed by the energy per unit of mass in the orbit, as 
we have seen in Chapter 1. Therefore, it is usual to give Vr  directly as a function of 
the energy per unit of mass, ε. This energy is the sum of the kinetic and potential 
energy: 

22222 )(
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2
1 h

r
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℘
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r
V

Vr εε θ  

Notice that Vr represents the modulus of the radial velocity, i.e., Vr ≥ 0; this sets 
important constraints on the radical once ε is fixed. It is usual to define a function 
Φ(r) or Effective Potential, such that, 
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and substituting the constants, 
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rr
gergr ξ1414
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39 1002.51057.6

2
1/1002.2)(  

where, for  convenience , we have introduced a new constant, ξ,  to give us the 
fraction of the maximum possible surface total surface ξ0=9.0792⋅104m2 (equivalent 
to the surface of  a circle with a radius of 170 m),  covered by the sail,  

4

2

100792.9
cos)(
⋅

=
ϕξ mS  

The shape of the effective potential depends on the value of ξ , i.e., on the 
efficiency  of the radiation pressure collector. If the radiation collector is very big, 
the spacecraft could escape the gravity of the Sun and leave the Solar System. To 
the contrary, if the collector is small, the spacecraft would be trapped in an orbit 
similar to that of the Space Port ( and of the Earth). This can be seen in the figure: 

 

The vertical axis of this figure indicates the value that should be adopted by the 
constant of energy ε, so that (ε-Φ) >0 and, therefore, we can keep the spacecraft in 
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this position. The most negative curve corresponds to ξ=0.1 and the most positive 
to ξ=10.  In the first case, the solar sail ship does not get enough thrust from solar 
radiation to escape the Space Port and will remain trapped in a nearby orbit. In 
contrast, if  ξ=10,   the spacecraft gets an enormous push from radiation and easily 
leaves the Port and  the Solar System.  

In practice, the value of  ε is very small, , at the Earth orbit and 
any reasonably sized sail (like the one proposed for the prototype Cosmos I) could 
not make it. In the application, we have used unrealistically high values for the 
surface to allow the students to play with the thrust of Solar Radiation. If they fill 
up a significant fraction of the total available surface (the circle at the begining of 
the application) they should be able to significantly modify V

gerg /1048.4 12⋅−

r and thus the 
direction of the total velocity vector. This opens up the “launching windows” for 
solar sail ships. The objective of the application is to strengthen some basic 
concepts in Physics.  

Notice that the “launching angle” or angle that the ship velocity makes with the 
vector Sun-Spacecraft  is: 

θ

φ
V
Vr=tan  

Thus φ can be varied by modifying Vr that, in turn, can be modified by turning the 
sails (i.e. changing ϕ) since:  

ϕcos)(1048.249.37)/( 24 mSskmVr
−⋅−=  

The students are to go through  this set of operations: 

1. adjusting Vr with the graphic interface to launch the ship in the desired 
direction (get the resultant vector V aligned with the Space Port-Saturn 
direction) 

2. the projected surface needed to get this resultant is calculated internally 
from: 

4
2

1048.2
49.37cos)( −⋅

−
= rVmS ϕ  

 and given to the student by the application. 

3. Later, students determine the projection angle ϕ using the surface of the 
sail as designed by them and the projected surface provided by the 
application. 
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Appendix 

1 
 

Newton’s Method 
 Newton’s Method is an iterative procedure to determine the zero’s or 
roots, “r”, of any equation f (x) = 0, providing that the function is “well-behaved”.  
An initial guess value, “x0”, is required and the first derivative of f(x), f’(x), should 
not change sign  within the interval (x0, r) to guarantee  convergence. 

f(x) 

x

 

The straight line tangent to the curve at  (xo, f(xo)) intersect the X-axis at “x1”, which 
is closer to the root “r” than “x0”.  Thus, 

 

))(()(0 010
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0 xxxfxf −=−  

and, 
)(
)(

0
'

0
01 xf

xf
xx −=  

This procedure can be repeated as many 
times as needed so a new “x2” may be 
defined, as in the figure, such that,   

)(
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1
'

1
12 xf

xfxx −=  
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 and, in general, the recurrence formula: 
)(
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'1
n

n
nn xf

xf
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Application to the resolution of Kepler’s equation: 
To find the solution to Kepler’s equation is equivalent to find the zeros of 

the function f(E) such that: 

senEeEMEf ⋅+−=)(  

and making use of the Newton’s method(*):                  
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and,                                 

n
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nn E

senEeEM
EE

cos11 −
⋅+−

+=+   

taking in the first iteration E0 = M3

 

 

                                                                          

3 Note: Angular values must be expressed in radians. 
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